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The stability of liquid layers in a porous medium under the action of viscous and 
surface forces is described. An extension of previous studies on the stability of 
a single interface in a porous medium is presented as the basis for solutions to 
many problems of practical interest where flow in porous media are involved. 

Introduction 
The stability of liquid-liquid and gas-liquid interfaces in porous media is of 

considerable interest in a variety of fields. For example, the movement of an 
oil-water contact is of importance in petroleum production engineering, and the 
behaviour of a freshwater-brine contact is of interest in ground water hydrology. 
Thus over the last decade the stability of such interfaces has attracted the atten- 
tion of many workers. However, the stability of liquid layers in porous media has 
been considered only recently by Raghavan (1970). This paper represents not 
only a logical extension of previous theoretical studies but also forms a basis for 
such problems of practical importance as the flow of liquids of varying viscosity 
and the mixing of liquids in porous media. 

The instability of interfaces in porous media was first considered by Saffman 
& Taylor (1958). Their principal conclusion was that, when two superimposed 
fluids of different viscosities are forced through a porous medium and then sub- 
jected to small deviations (perturbations), the stability of the interface depends 
on whether the direction of motion is from the more viscous to the less viscous 
fluid or vice versa. This is true whatever the relative density of the fluids, provided 
that the velocity is sufficiently large. They also pointed out that the instability 
which results due to the viscosity difference is similar to the Rayleigh (1899)- 
Taylor (1 950) instability wherein the interface between two liquids becomes 
unstable if the acceleration is from the lighter to the heavier liquid and is stable 
if the acceleration is in the opposite direction. 

Saffman & Taylor assumed that the two immiscible fluids remain completely 
separate at  the interface in a porous medium. The description of the normal 
modes of disturbances from an interface and their rate of growth requires a know- 
ledge of boundary conditions at the interface. Starting with the simplest assump- 
tion of a planar interface (surface tension is then neglected and equality of 
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pressures assumed), they showed that when the interface between the two fluids 
was horizontal, it would be stable for small deviations from steady state if 

and unstable if 

Here k is the effective permeability of the medium to the fluids, p is the viscosity, 
pis the density, V is the velocity normal to the interface, g is the acceleration due 
to gravity, and subscripts 1 and 2 refer to the upper and lower fluids, respectively. 

Under the simplest of assumptions, the effect of surface tension was to dampen 
wavelengths less than A ,  where 

h = 277cr~b[12V(p,-pu,) +b2g(p1-p,)]-B. (3) 

Here b is the spacing between the plates in a Hele-Shaw cell and a i s  the interfacial 
tension. 

Saffman & Taylor’s experiments with air-water systems were somewhat 
similar to those of Lewis (1950) who studied both accelerated air-liquid and 
liquid-liquid interfaces. They examined the post-instability situation of 
fingering-and noted that the development of these fingers was similar to  the 
development of those described by Lewis for the later stages of instability of an 
accelerated interface. However, in their experiments, Saffman & Taylor noted 
that the air fingers and the columns of liquid in between them were equally 
spaced, whereas the air fingers of Lewis’s experiment were separated only by 
very narrow columns of fluid. They also conducted experiments in Hele-Shaw 
cells using oil and water, which again confirmed theoretical predictions regarding 
instability, but their results regarding the post-instability situation were 
in conclusive. 

Saffman & Taylor’s conclusion that the viscosity ratio is an important factor 
in fluid displacements in porous media is not new to the oil industry. Until 1958 
research in the petroleum production industry had been concerned mainly with 
the conditions necessary for a steady interface to exist in certain cases, and not 
explicitly with the stability of the interface (Dietz 1953; Kidder 1956). The 
analysis of the instability of fluid interfaces has been carried further by Chuoke, 
van Muers & van der Poel(l959). They considered a planar interface between two 
immiscible liquids which was initially at an angle (2 N 2,) with the vertical plane 
and which was then displaced at  a constant rate, U, normal to the front. Their 
theoretical results indicated that instability would occur for all rates greater than 
a critical rate, U,, given by 

and provided that the Fourier decomposition of the spatial perturbation or 



The stability of immiscible liquid layers 145 

deformation of the moving displacement front contains modes with wavelengths, 
A ,  which are greater than a critical wavelength, A,, given by 

(5) 

Furthermore, they reported that there is a wavelength of maximum instability 
given by 

Their theoretical expressions are in fair agreement with experiments with both 
parallel plate channels and unconsolidated glass powder packs. 

The non-linear theory of frontal stability in porous media has been considered 
by Outmans (1962), who points out the error of neglecting the non-linear terms 
in the boundary conditions. His results are analogous to those of Chang (1959). 
Outman's analysis includes a detailed discussion of the limitations of the linear 
theory in studying the phenomena of fingering. 

In spite of the superficial resemblance of the Saffman-Taylor instability to the 
Rayleigh-Taylor instability, there are basic differences. The dynamic boundary 
condition in the two cases is different and this affects the rate at  which the dis- 
turbances are amplified. The growth factor for the Saffman-Taylor instability is 
always real, whereas that for the Rayleigh-Taylor instability can be complex. 
Also, the number of roots obtained in the solution of the equations are greater for 
the Rayleigh-Taylor instability. 

The physical differences should also be borne in mind. The Rayleigh-Taylor 
instability corresponds to accelerating inviscid fluids and inertial terms are con- 
sidered. However, the Saffman-Taylor instability represents movement of fluids 
a t  constant velocity where Darcy flow prevails, that is, the inertial terms are 
negligible and the viscous terms dominate. 

Recently the petroleum production industry has begun to take an interest in 
the formation of emulsions in porous media. Much of the crude oil produced in the 
world is in the form of stable emulsions. The part played by the porous medium 
in the formation of emulsions is a controversial question and has been largely 
overlooked by members of the petroleum production industry. It is often claimed 
that these emulsions are formed as oil and water flow through the chokes and 
other flow constrictions in oil field equipment. Even though this view is certainly 
reasonable, emulsions are still produced in wells which not only lack these con- 
strictions but which also produce a t  low flow rates. Also in some laboratory 
experiments the flow of crude oil and brine results in the formation of emulsions. 
This strongly suggests that at least in some cases the emulsions are produced in 
the reservoir rock itself and thus there was need for the study of the role of the 
porous medium in emulsion formation. Such a study has been made by Raghavan 
& Marsden (1971). They have shown that the study of the stability of fluid inter- 
faces offers a profitable method of investigating emulsification in porous media. 
Their basic contribution has been to demonstrate that viscosity differences 
between fluids can play a significant role in the emulsification process. 

A, = 39A,. (6) 

I0 F L M  48 
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The emulsification process mentioned above has been visualized by Raghavan 
& Marsden to occur in a number of stages. The first stage of their model consists 
of the break-up of a liquid layer. As mentioned earlier, this study should be of 
interest to a number of research workers in other fields, and so this analysis of 
the stability of fluid layers is presented in a general manner. 

Formulation 
In  ordinary fluid flow problems the geometry of the conduit can almost always 

be specified. However, for viscous flow in the extremely complex geometry of 
porous media, specification of the flow geometry is impossible. The failure of 
a theoretical analysis to yield a tractable equation of flow has led to the experi- 
mental determination of the factors affecting the flow of fluids in porous materials 
and the results are known as Darcy’s law. This law states that the macroscopic 
velocity of the fluid in the direction of flow a t  any particular point within the 
porous medium is proportional to the instantaneous gradient in the fluid head 
or flow potential a t  the point. Symbolically this may be expressed as 

V = -*grad(xg-$ P p). ( 7 )  

Here, p is the pressure, x the distance in the vertical direction which represents 
the gravitational head, and V is the macroscopic velocity. 

It should be noted that the above velocity is a macroscopic velocity wherein 
the solid matrix of the porous medium and the fluid occupying the pore channels 
are envisioned together as a composite conductor of fluids. Miller (1962) has shown 
that it is also possible to consider only the pore channels in which case a micro- 
scopic velocity may be defined and Darcy’s law expressed as 

V = -ggrad(zq-$p) ,  PQ 

where V is now a microscopic velocity, and 6 is a statistically averaged porosity 
of the matrix. In  the present analysis we shall use (8). Miller has also shown that 
the above equations can be extended to more than one fluid flowing in a porous 
medium. 

Let us now consider the stability of a planar slab or a layer of liquid which 
separates two liquids a t  different pressures. The properties of the two surrounding 
liquids may or may not be different from each other, but they are different from 
the liquid layer under consideration. The porous medium is assumed to be a 
homogeneous, isotropic rock matrix with constant porosity and effective per- 
meability to the liquids. We shall assume the liquids to be incompressible, and to 
have a constant viscosity. The interfacial tension between the liquids is assumed 
constant. The liquids are also assumed to fill the pore spaces of the rock com- 
pletely under basic flow conditions. 

In a system of this type, an unperturbed immiscible displacement is character- 
ized by a transition zone of steep saturation gradients of the displacing and 
displaced liquids. This means that a sharp interface does not exist, but that there 
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is an ill-defined transition zone in which the liquids intermingle. In  the model the 
transition zone is replaced by a sharp planar, macroscopic interface to which are 
assigned pressure discontinuities preserving the capillary properties of the transi- 
tion zone. The relatively uniform saturation and flow conditions prevailing out- 
side the zone are extrapolated back to this hypothetical interface. Perturbation 
theory can be directly applied to these models, and finds partial justification 

Transition zone - 

4 
Hypothetical planar interface 

FIGURE 1. Representation of transition zone for immiscible liquid 
displacements in a porous medium. 

(implied in all the following work) in that only fundamental perturbation modes 
with wavelengths that are large relative to the width of the transition zone at the 
time of application of perturbation will be considered. Figure 1 is a sketch 
showing the transition zone as well as the idealization mentioned above. 

As a further assumption, we shall neglect the motion of the surrounding fluids, 
in order to consider the stability of a single layer in detail. It may be suggested 
that the utility of this analysis is limited because the surrounding liquids are then 
assumed to have a negligible density and mobility (ratio of permeability to 
viscosity). But inertial effects are usually neglected while considering flow 
through porous media as exemplified in the analysis made by Saffman & Taylor. 
In  fact, it should be noted that Saffman & Taylor’s conclusions are independent 
of the relative density of the fluids. 

The assumption that the surrounding fluids have a negligible mobility also 
requires some mention. In oil-field practice, mobility differences between fluids 
undergoing immiscible displacement (either naturally such as the movement of 
an oil-water contact, or artificially in the case of a water-flooding operation) can 
be fairly large. Thus from a practical point of view the assumption regarding 
mobility ratios is satisfactory. 

Having considered the flow equation as well as the principal assumptions in 
detail we can now consider further the formulation of the problem. Darcy’s law, 

10-2 
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together with the assumption of incompressibility, implies the existence of 
a velocity potential, @, defined by 

Wx, Y, 2, t )  = (k/,u$) (P + P94,  

which satisfies Laplace's equation. Thus 

and 

V = -V@ 

v w  = 0. 

(9) 

The boundary surface is given by 

The subscript j = 1 and 2 corresponds to the upper and lower surfaces of t,he 
liquid layer respectively. 

The dynamic and kinematic boundary conditions can be written, respec- 

and @z-@zTjz-@vTiu+Tit = 0 on z = qj (j = 1,2),  (14) 

where p j  is the pressure outside the layer, H is the curvature of the surface, and 
the subscripts x, y, x and t represent partial derivatives in the space and time. 

Equation (13) states that the pressure discontinuity across the interface is 
equal to the capillary pressure. Equation (14) expresses the kinematic bounda,ry 
condition that the substantial time derivative on the interface is equal to zero. 
This means that there is no relative motion between the interface and any fluid 
particle at  the interface, i.e. that any fluid particle at  the interface moves in the 
direction of and at  the speed of the interface. The initial conditions will be 
imposed as needed. 

In  the present instance the flow is unbounded in the x, y plane (plan form). If 
the flow is bounded by a cylindrical tube which has an axis parallel to the z axis 
the condition on the circumference of the cylinder is 

m / a i v  = 0, (15) 

where N is the direction normal to the circumference. 

Solution 
The proposed model assumes that a zero-order flow exists. The fist-order 

perturbation of the same flow which satisfies linear equations is represented by 
a series, or integrals of normal modes. Some of the modes are found to be unstable 
in the sense that their amplitude increases indefinitely with time. Of these 
unstable modes, the one which has the largest exponent is the least stable, and is 
assumed to be responsible for the break-up of the layer into segments. The 
number of segments depends upon the number of positive and negative regions 
into which this mode is decomposed by its nodal lines. These segments, after 
break-up of the layer, could become spherical. The number and size of the 
resultant droplets are then determined. 
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Zero-order solution 
Let the bounding surfaces be planes normal to the z axis and independent of 
x and y. The solution will then be independent of x and y. Then if U denotes the 
z component of velocity, we have, from (10) and (1 l ) ,  

Qo = - Uz+b, (16) 

where the superscript 0 denotes the zero-order solution. 
Now, as 7i is dependent only on t ,  from (13), (14) and (16) we have 

and u = 7bt ( j  = 1,2) .  (18) 

7; = 7Y-h. (19) 

If h denotes the initial separation between the two surfaces, from (12) we have 

Solving for U ,  we have U = 

First-order perturbation 

Suppose that the initial bounding surfaces differ from planes, and that the initial 
velocity differs slightly from the constant z component assumed in the above 
solution, which we will henceforth call the ‘unperturbed solution’. Then we may 
expect the subsequent solution to differ slightly from the above solution. If 6 is 
a measure of maximum deviations from the initial data, we assume that the 
solution may be written in the form 

a) = w + s w +  ..., = ?$+q;+ .... (211 

From (11) and (21), we see that Q1 also satisfies the Laplace equation. From 
(13), (14)’ (16) and (21), we obtain the first-order perturbation equations for 
<D1 and 7:: 

and @;+qZt = 0 on x = 78 ( j  = 1,2).  (23) 

To solve Laplace’s equation for 01, assume that W is a product of a function 
of z and t multiplied by a function Y ( x ,  y ) .  Thus, let 

and 

Q1 = [Cl(t) em+ C,(t) e-mS] Y ( x ,  y) (24) 

7; = AieatY?(x, y ) ,  (25) 

where m is the wave-number of the disturbance in the z direction, C is a function 
of  time, A, is an arbitrary constant, and a is the growth factor which governs 
the amplification of the interface. 
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Our prime interest in this analysis is the study of the behaviour of a. Substi- 
tuting the right-hand sides of (24) and ( 2 5 )  for Q1 and r1 in ( 2 2 )  and (23) and 
simplifying, we have: 

m3 coth (mh) J. m + m4[coth2 (mh) - 11 

and 

There are two values of a and each a is the sum of two terms of the form 
of (27). 

Marginal stability 

It has been shown that there are two values of the growth factor a. If both values 
of a are negative, then the perturbation of the surface is such that no break-up 
of the interface occurs. The negative values of a are not of significance in the 
present study, and in practice cannot be seen as they would be damped out. 
However, when the positive sign before the square root sign is chosen for a certain 
range of 0,a is positive and real, leading to a growing exponential. As the system 
passes from stability to instability, the value of a will pass through zero. q!he 
results obtained have established that there is no oscillating motion with respect 
to time; consequently, attention may be confined to modes associated with real 
exponential time factors, a,nd limiting conditions of stability are in fact obtained 
when all time variations are zero. The study of these limiting conditions- 
marginal stability (Jeffreys 1926)-is of importance to understand the departure 
from stable to unstable flow. 

To determine the condition for the onset of instability, the growth factor, a, is 
set equal to zero in (27) and then the following results: 

Defining 

we have m2 = P. (32) 

The critical velocity for the onset of instability is, after some manipulation, 

which can be further expressed as 

The neutral stability curve represented by (30) is shown in figure 2. The plot 
delineates the stable and unstable regions for ratios of pressure gradient to inter- 
facial tension as a function of wave-numbers. (Note that any disturbance should 
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contain some of all wave-numbers shown.) Large values of m (small wavelengths, 
m = 27r/h), are stabilized for any particular ratio of pressure gradient to inter- 
facial tension, p, i.e. there is a cutoff wave-number above which instability does 
not occur for a particular value of /3. This is due to the stabilizing influence of 
interfacial tension. Figure 2 also indicates that the cutoff wave-number increases 
as the ratio for the viscous to surface forces increases for a given disturbance, thus 
demonstrating the relationship between the Stabilizing and destabilizing forces. 

Ratio of pressure gradient to interfacial tension, p (cm-z) 

FIGURE 2. Neutral stability curve: wave-number versus ratio of pressure 
gradient to interfacial tension. 

The critical velocity according to (33) and (34) is a function of the wave-number 
and the ratio /3. The relationship between the critical velocity and the wave- 
number for ratios of pressure gradient to interfacial tension is shown in figure 3. 
It is seen that at least some wave-numbers of a disturbance are unstable for any 
value of /3, i.e. instability always exists. This velocity is insensitive to the wave- 
number when m < 1 for all /3 considered, and is considerably influenced by the 
wave-number for m > 1. 

Instability 

For conditions when a! > 0, there is a greatest value of a!, corresponding to a 
particular value of 3 (say Omax). The exponential corresponding to this value of 3 
will grow most rapidly. An approximate value of Om,, may be obtained if we 
first obtain an expansion for a when B is large. In this case (27) becomes 

(35) 
and a is positive between 3 = 0 and 234. 

# ~ h 3 a / 0 - ~  = 3[B - 8 2  coth 81, 

It should be noted that (35) implies that 

1 32 1 . 3  
B>--  > -. 

2tsinh3 2t  

The maximum value of a occurs when 
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Recalling that by (28) 0 = mh, we may introduce m,,,, the value of m corre- 
sponding both to  Om,, and to maximum instability. From (36) we have 

I I I I I I I I I I  I I I I 1  1 1 1 1  

10-1 1 10 

Wave-number, m (cm-I) 

FIGURE 3. Calculated difference in interfacial and critical velocity versus wave-numbers 
for various ratios of pressure gradient to interfacial tension. /l = Ap/uh.  

The relationship between a growth factor, xn, defined by 

X n  = (#u/0-k)a (38) 
and a wave-number, m, for various ratios of pressure gradient to interfacial 
tension is given in figure 4. Some of the modes for a given /? are unsbable. The 
dominant mode would be expected to grow a t  the fastest rate, and be responsible 
for the break-up of the interface. As t h e  ratio p increases, the value of the cutoff 
wave-number m and the magnitude of the growth factor xn corresponding to 
each wave-number increase. It is also of interest to note that wave-numbers just 
below the cutoff wave-number grow a t  a rate faster than those of larger wave- 
lengths. 

The dependence of the growth factor xn on the ratio of pressure gradient to 
interfacial tension p for the range of wave-numbers considered can be seen in 
figure 5 .  
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FIGURE 4. 

Wave-number, m (cm-l) 

pressure gradient to interfacial tension. /3 = Ap/uh. 
Calculated growth factors versus wave-numbers for various ratios of 

Ratio of pressure gradient to interfacial tension, /3 
FIGURE 5. Calculated growth factors versus ratios of pressure gradient to 

interfacial tension for various wave-numbers, m. 
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Plan form 

To determine the number of pieces into which the layer breaks due to the growth 
of the term corresponding to m,,,, the function Y ( x ,  y) must be considered in 
detail. Again the geometry of the medium plays an important part. If the layer 
is unbounded in the x, y plane, there will be many functions of Y(z, y) corre- 
sponding to mmax. On the other hand, if the region is bounded, there may be no 
solution corresponding exactly to m,,,, although there will be many functions 
of Y(x,y) near m = mmax. Thus there will be many functions Y with either 
exactly, or approximately, the same value (m z mmax); and the corresponding 
terms will grow at the same maximum rate. Consequently the exact manner of 
break-up will depend upon the extent to which these terms are excited by the 
initial perturbation. 

An estimate of the number of pieces into which the layer breaks can be made 
as follows. For an unbounded region, one solution of Y(x,y) corresponding to 

where 

Y(x,y) = exp 2772 -+- [ In", 3 1 9  

(39) 

Consider regions in the x, y plane in which the real part of Y is positive (or 
negative). These are rectangles bounded by nodal lines, and the dimensions of the 
rectangle are +A, and *A2. The area for a fixed perimeter is minimum and is given 
by A, = A, = 2n2*/mma,. Thus the minimum area is 

Equation (40) can be expected to represent roughly the area into which a segment 
of the layer will break because all parts of the surface in this region move in the 
same direction. The volume of the segment will be given by this area determined 
above, multiplied by the thickness h. The radius r of the sphere into which the 
surface volume will ultimately deform is 

Using (20), we have 

Somewhat similar results are obtained for a tube of rectangular or any other 
bounded shape. 

On the basis of (42) three means are available for diminishing droplet size, 
namely: (i) reducing the thickness of the layer h;  (ii) reducing interfacial tension 
by use of surface-active agents; (iii) increasing the pressure difference, ( p z  -p , ) .  

Another point to be noted is that reducing h has the twofold effect of 
(a )  increasing velocity and (b)  creating thinner pieces. 
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The time required for break-up can be approximately estimated if it is assumed 
that the layer breaks up when the perturbation reaches a value of h. The time for 
break-up is given by 

t = -In-, 

whereA is the initial perturbation and amaxis the value of a corresponding to 8,,,. 

(43) 
1 h  

amax A 

From (35) and (36), the value of amax can be obtained as 

Thus, (45) 

Effect of surface tension 
The preceding analysis has been carried out for a constant value of surface 

tension. The effect of the spatial variation of the surface tension is now examined 
in a simplified manner. Also, the variation in surface tension should of itself 
cause a relative movement of the interface. The model proposed is essentially an 
extension of the Saffman-Taylor analysis. 

Consider two liquids to be at rest in a porous medium with the lighter fluid 
(represented by carets) to be above the denser fluid with an unperturbed inter- 
face, z = 0. The model proposed considers the variation of interfacial tension at  
random spots representing situations where local reductions are few and far 
apart. Surface tension is considered to be a step function (which may be periodic) 
and is given by 

gl-cr,, for 1x1 c 6. (47) 

The velocity potential and flow equations are those which have been defined 
previously. 

The dynamic condition a t  the interface is (following Landau & Lifshitz 1959, 
p. 234). 

The kinematic boundary condition for small disturbances at  the interface is 

a@ a$ 9-  - -- 
at ---- 8.2 az (49) 

where the boundary surface is given by 

z = q(x,t). (50) 

It will be shown that, for a given disturbance, the interface in the two regions 
moves at  different speeds and thus hydrodynamic instability results. 
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Solution 

Case A, (T = u, and 1x1 > 6. A small perturbation of the form cos sx is impressed 

(51) 

= Ccossxexp (mx)f(t), ( 5 2 )  

(53) 

at t = 0. Let 6 = A cosszexp (-mz)f(t), 

'I = A ,  cos szf(t), 

where A ,  C and A,  are arbitrary constants andf(t) is a function of time. 
Substituting the right-hand sides of (51) and (52) for 6 and CD in (48) and (49), 

and simplifying, we have 

9 (54) 

where D is an arbitrary constant. Noting that m = s, we have 

where 156) 

Thus we have 7, = A,  cosmzexp ( - a,t). (57) 

Case B, (T = u, - go and 1x1 < 6. By an analysis similar to that used for case A, 

( 5 8 )  
it can be shown that 7z = A,cosmxexp( -a&), 

where (59) 

In order to study the relative motion of the interface, (57) and (58) would have 
to be matched at 1x1 = 6. The conditions to be satisfied are that at  1x1 = 6, there 
should not be a sudden jump in physical parameters such as (i) displacement 
and (ii) velocity. That is, at 1x1 = 6, 7, = 7, and 'I,,~ = 'I,,~. 

Continuity of displacement gives rise to cos mS = 0, or 

m6 = +(2q+ l ) ~  (q = 0,1 ,2 ,  ...), (60) 

the case q = 0 being of primary interest. 
Continuity of velocity implies that 

i.e. 

A ,  = A,- ",exP(-a,t) 
a,exp(-a&)' 

From the comparison of ( 5 7 )  and (62 ) ,  it  can be seen that the two regions are 
displaced differently. 

There are certain points which have to be considered further. Examination of 
( 6 2 )  shows that the component of time is a decaying function and that the 
tendency for spontaneous displacement will decrease with time, while (62) also 
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indicates that density differences of two fluids will influence the movement of the 
interface. If the density difference is extremely small, then changes in interfacial 
tension would be dominant. This would be so in two-dimensional horizontal flow, 
where the ‘gravity’ terms would drop out and changes (lowering) of interfacial 
tension would have a marked effect. 

It has already been mentioned that the effect decays as time increases. There is 
one point which must be remembered, however. It has been assumed that the 
system is at rest. If the interface were moving at a constant velocity U ,  then, 
following Chuoke et al. (1959), 

and - 

and instabilities will now result depending on the viscosities, and the effect of 
differential displacement will be enhanced. The time component can be changed 
from a decaying function to an increasing function for a critical velocity U,, 
where U, is given by 

u,+ @-p)g = 0, (65) 

provided that perturbation wavelengths are greater than 

This derivation has several limitations. For example, factors such as interfacial 
films have not been considered. As a result, quantitative agreement with real 
systems may not be possible. Nevertheless, the qualitative conclusions regarding 
this problem are valid for the model envisaged, which is simple mathematically 
and physically realistic. 

One further point bears mention: that is, the phenomenon of negative inter- 
facial tension (Davies & Haydon 1957). In  this case, cr, - v,, is negative and the 
interface could be unstable even if the system is at  rest, 

Discussion 
As already mentioned, the stability of liquid layers in porous media is of 

interest in the study of a number of practical problems. In  the present instance, 
particularly for studies regarding emulsification, it was felt that surface tension 
was a more dominant parameter. Thus the analysis presented here considers in 
detaiI the motion of a slab of liquid with the movement of the surrounding liquids 
being neglected. The motion of these liquids can be taken into account. Modifica- 
tions of the above analysis to include the effects of the motion of the sur- 
rounding liquids have been considered by Raghavan & Marsden. This then would 
lead to the consideration of fluids of varying viscosity in a porous medium. 
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Comparison must also be made of the results presented here and those obtained 
by Keller & Kolodner (1954). Even though the expression for the radius of the 
droplet as given by (42) is the same, there are many basic differences, Both the 
physical situations and the dynamic boundary conditions are different. Keller & 
Kolodner analyze the situation for an inviscid fluid and thus consider inertial 
terms whereas here we consider Darcy flow which implies viscous flow with 
neglect of inertial terms. The growth factors obtained in both analyses are also 
different. 

The drop formation aspect of the study needs further clarification. Due to the 
non-linear character of the problem, this study like all similar ones has been based 
on a linearization technique. As a consequence, the results obtained during the 
post-instability situation are only approximate. However, the utility of the 
higher-order analysis is not apparent at this time. 

The present analysis has indicated that, as instability sets in, liquids are in 
tangential motion relative to each other. This could lead to instabilities of the 
Helmholtz type. Also the stability of these lamallae (fingers) which are formed 
can be further studied by approximating them to cylindrical threads. Studies 
of the two instabilities mentioned above have also been made by Raghavan and 
have been described elsewhere. 
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